.

SHORT PAPERS

V. CONCLUSIONS

A study has been made on the EGW circulator, which has led to
the fabrication of a broad-band MIC circulator operating in the
frequency range 8-12 GHz. The principal scope of the study was to
establish the fundamental physical principles which underlie the
EGC’s operation and to show how they differ from those relative
to the traditional Y-junction MIC circulators. It has been shown
that broad-band operation of the EGC requires the introduction of
mode-suppressing devices. Our choice was an inhomogeneous mag-
netic bias. Although the performance data of a three-port EGC
favorably compare to those of other circulators, a greater complexity
in mechanical construction as well as higher and more extended mag-
netic biases are necessary to guarantee a correct operation of the
EGC. These are perhaps the principal reasons why such circulators
as the continuous tracking circulator (CTC) will more likely enjoy
the favor of microwave designers. For broad-band four-port circu-
lators, the EGC version seems to be much more attractive mainly
because no continuous tracking principle has been demonstrated to
exist for this case [10]. The optimization of a four-port EGC is,
however, still under way. The theory of the EGC seems to be at a
rather early stage and still deserves some attention.
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plings within a system of coupled cavities by measuring frequencies
at which the phase of the input reflection coefficient is either 0° or

Manuscript received September 19, 1974; revised December 23, 1974,
This short paper is based upon work performed in COMSAT Labora-
tories under the sponsorship of the International Telecommunications
Satellite Organization (INTELSAT). Views expressed in this short
paper are not necessarily those of INTELSAT.

The authors are with the COMSAT Laboratories, Clarksburg, Md.
20734.

519

180°. A high degree of accuracy may be achieved and corrections can
be made for finite cavity 0.

INTRODUCTION.

Accurate determination of coupling between electrical cavities is
required to design direct-coupled cavity waveguide bandpass filters.
Bethe’s [1] small-hole coupling theory, modified for larger slots by
Cohn [27, gives dimensions which are approximately correct and
normally sufficient for filter transfer functions having a small num-
ber of cavities and monotic out-of-band responses.

However, for bandpass filters which have real transmission zeros,
more stringent specifications are imposed on the accuracy of the
coupling values. Therefore, to realize this improved accuracy, it is
desirable to have some method of measuring the coupling values
within the assembled filter. This short paper describes the use of
measurements of the input reflection coefficient phase from a short-
circuited set of cavities to determine intercavity coupling. The accu-
racy is sufficient for successful tuning of such filters as the non-
minimum-phase optimum-amplitude bandpass waveguide filter [3].

MEASUREMENT TECHNIQUE

A general lumped-element equivalent circuit for a system of n
coupled cavities is shown in Fig. 1. All resonant cavities are tuned
to a resonant frequency wo = 1/(LC)Y2 =1 rad/s and have the
same impedance, Z, = (L/C)¥? = 1 Q. Use of a narrow-band ap-

- proximation makes it possible to describe the coupling between the

cavities as an n X n, symmetric, purely imaginary matrix jM, which
is frequency independent near wo. The element M, is the coupling
between the 7th and jth cavities.

The input impedance Zy® is given by

det (FI — jM,)

Zy® = . s
det (jA — jM 1)

1)

where M, .4 is the matrix resulting from the deletion of the first row
and column of M, A =s+ (1/s), s = jw, and I is the identity

_matrix. Therefore, the poles and zeros of Z® are the eigenvalues

of M, and M,, respectively.

In practice the reflection coefficient p», which is equal to
[Zu™ — R)/[Zu™ 4+ R7], is the parameter which is most easily
measured. It follows that the 0° and 180° phase positions of p™
correspond exactly to the poles and zeros of Z;®. The measuring
technique used exploits the fact that frequencies of the zeros and
poles of the input impedance can be measured with a high degree of
accuracy. Then the coupling values are computed from a knowledge
of these frequencies and the way in which the cavities are coupled.
Analytically, this problem is equivalent to determining the values
of the elements of a real symmetric matrix M from a knowledge of
its eigenvalues and the eigenvalues of one of its first-order minors.
Explicit expressions for the coupling coeflicients are presented for
some cases of practical importance (i.e., n = 2, 3, and 4). Addition-
ally, a method for computing the couplings in the general case of
arbitrary = is also described.

Two Cavities (n = 2)
The condition for synchronous tuning of the cavities is
Wp — Wo = Wz — Wp (2)

where w, 2 and «, are the angular frequencies of the zeros and pole
of Zy;®, respectively. Under this condition, the input impedance is
given by

A2 — My

Zu® =i
1 J N

(3)

The zeros are at A\, = =M, and the poles are at A, = 0.

It can be seen from this equation that coupling M. can be com-
puted by accurately measuring the zeros of Zu®. Fig. 2(a) is a
typical polar plot of the locus of p® as a function of frequency. Since
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Fig. 2. (a) Typical polar plot of the locus of p® as a function of fre-
quency. (b) Typical polar plot of the locus of p® as a function of
frequency.

2
x=(‘—"——93)g—(w—wo) @)
wo w wo
then
2 2l — 2
Aot — A2 = 2My; = —M
wo
or
My = 2= 0m) (5)
wo

Therefore the coupling My, between cavities 1 and 2 can be deter-
mined by measuring wa and w,z with wp = wo.

Three Cavities (n = 3)

The conditions for synchronous tuning are

we2 = wo (6a)
Wi ™ Wil T W3 T We2 (6b)
Wa2 = Wpl = Wp2 T Wele (6¢)

General equivalent circuit of n arbitrarily coupled cavities.

The input impedance (with My = 0) is

A8 — )\(M232 + M)
Ty ® = 7
it J M ( )
with zeros A, = 0,2 (Ma? + M:2)!?, and poles A, = £My. Fig.
2(b) is a plot of p® as a function of frequency.
The coupling values My and My can be computed by using (4)
as follows:

(wp

- fon — o) ®)

@wh

M

and
(Awz1? — Awpa?) 2

wo

M = 9

where . is equal t0 wy and Awas = wa ~ w3, Awpz = Wpt — Wpse
Four Cavities (n = 4)

For four cavities, a unique solution is possible if only three cou-
plings are present. In this case, the conditions for synchronous
tuning of the cavities are

wo = Wpe (10a)
Wp2 — Wil = Wi4 — Wp (10b)
Wp2 — Wp1 = Wpz — Wpa (10¢c)
Wps " Wiz = Wiz — Wpo. (10d)

The solution for the coupling coefficients in this case yields the
following results:

Case 1: M12 =, M13 = M24 =0
wz4—w02 w3"‘w02 ws_woz
Z
M = - - £
o wo wo

[(wzs — w0) /oo ][ (w2 — w0) /eo]
M14

Mzs =

C’ase 7 Mza = an = M24 = 0

Wp3 — Wo
My = ———

wo

[(was — wo) /o[ (was — wo) /evo]
My,

2 2
Wz4 = Lo Wz — W
M142 = ( ) - ( ) —_ 2‘4'342 - M192.
Wy wo

Case 150 M3y = Myp = My = 0

My =
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My = ——

_ L{ws — wo) /wo ][ (@ — wo) /wi]
B Mo

2 2
M122 - (wz4 - w0> _ (wzs - wo) _ M232 _ M142.
wo wo
Case w: M14 = M13 = M24 =0
M 2 _ <“)z4 - (l’O)2 _ Wy — Wo z = Wz — ‘-"O)2
. wo o wo
_ Llws — @) /oL (wa — wo) /w]
M12

MM

My

2
Wpg — Wo
Myt = <__> — M2
wo

7 Cavities

The solutjon in the general case of arbitrary n may not be unique.
However, it is easy to derive a coupling matrix M, for which the
input impedance Z;; is specified as in (1). Then certain elements
of this matrix (where it is known that no couplings exist) can be
reduced to zero using orthogonal similarity transformations, as de-
seribed in [4]. For this purpose, then, consider the input admittance

n-1 n
@) =5 [T = w)/TT 0 =)

i=1 ye=1

(11)

where u; and N\, are the measured (normalized) poles and zeros of
Zu'™, respectively; i.e.,

Wopq w 2 .
I~‘z=(_p'__q'>’—\'——'(wp£"’w0)) t=12,00,n =1
wo Wpi wo
zy 2
A= ((-0— - w—o> o — (w2 — wo), v=1200m. (12)
o Wa, we

The poles jA, must be simple, purely imaginary, and satisfy the
condition [4]

>a = 0.

(13)
»=1

A partial fraction expansion of (11) can now be made as
m(\) =4 ki 14
yu™\) =j E Y (14)

where
n-1 7

K; = H ()\i - l‘l)/ H ()\z - )‘v): 1= 1:2y"‘7n~ (15)

I=1 y=1;y5%¢

Note that all the residues K, are real, positive, and satisfy the
condition [4]

> MK = 0.

=1

(16)

The conditions expressed by (13) and (16) are necessary conditions
for synchronous tuning of the cavities.

An orthogonal matrix 7 can now be constructed whose first row
is given by

Ty = (K,/NDY,  § =12+ an

where

n
N = DK,

i=1

521

is a normalization constant. The remainder of 7' can be found by a
variety of ways; e.g., by using the Gram-Schmidt procedure and
the coupling matrix M ean be constructed from

M = TAT? (18)
where A = diag (A;,Me,+++,\) and T is the transpose of 7. The
diagonal elements of M as well as other nondiagonal elements can
be reduced to zero [4], and hence the required coupling matrix is
reconstructed. In particular, if the cavities in the structure being
measured are direct coupled (i.e., no cross-couplings exist between
nonadjacent cavities), then the reduction of M to a tridiagonal form
is always possible and yields the (unique) values of the coupling
elements. In practice one can always apply this result in measuring
any desired couplings in a multiple-coupled cavity system by the
proper choice of a subset of direct-coupled cavities which contains
the couplings to be measured, while detuning other cavities to
which a cross-coupling path exists.

MEASUREMENT ACCURACY

In practice, since the cavities have finite unloaded @Q, a limit will
be set on the smallest coupling that can accurately be measured.
It is possible to see the qualitative effect of the loss on measurement
accuracy by considering two cavities. If the loss is taken into ac-
count, the coupling is given by

This leads to the approximate rule that M must be at least 10(1/Q)
to keep the error less than 0.5 percent.

The 0° and 180° phase positions of p can be accurately measured
by using a network analyzer and by employing a stable CW source
together with a digital counter. The final error in M is principally
dependent on operator and network analyzer error.

CONCLUSIONS

Fig. 3 is a typical result of the measured coupling between two
waveguide cavities. It has been found that the coupling value is not
constant, but depends on the resonant frequency of the screw-tuned
cavities. The coupling is affected by the penetration of a tuning
screw or the presence of additional coupling slots and /or screws. The
mode is perturbed, and consequently the coupling is decreased. This
result demonstrates very clearly that, for precise realization of a
set of coupling slots, it is essential for coupling measurements to be
made within the filter while the filter is assembled and while each
cavity is tuned to synchronous frequency.

The measurement technique was first used to set the coupling
values on the nonminimum-phase optimum-amplitude waveguide
bandpass filter [3]. Without such a technique, it would have been

T T T 1 T v I
CAVITY DIMENSIONS = 2200 m X 2280 in X 1.934 in
SLOT WIDTH = 00625 in
SLOT LENGTH = 082565

WALL THICKNESS OF SLOT = 0020 in

SIDE WALL COUPLING X102

040 1 1 ! ] ] i 1
389 390 391 392 393 394 398 396

FREQUENCY ({GHz)

Fig. 3. Side-wall coupling versus cavity synchronous frequency.
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impossible to tune the filter due to perturbation of the coupling
values by the coupling and tuning screws.
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Loss Considerations for Microstrip Resonators

E. BELOHOUBEK, FELLOW, IEEE, AND
E. DENLINGER, MEMBER, IEEE

Abstract—The influence of radiation losses on the @ of microstrip
resonators is shown for a variety of frequencies, characteristic im-
pedances, substrate materials, and thicknesses. Radiation becomes
a dominant factor at higher frequencies, especially for low-impedance
lines and thick substrates with a low dielectric constant.

I. INTRODUCTION

The designer of microstrip circuits is often faced with the question
of what the best substrate thickness is, and what characteristic im-
pedance should be used if low loss is of primeimportance. The partic-
ular circuit may be a high-Q resonator, a coupled-line filter, or some
general matching network. The losses encountered with microstrip
circuits divide into conduction, dielectric, and radiation losses. The
first two loss factors have been dealt with extensively in the literature
and good approximations exist [1]. Radiation losses are less well
understood although several articles [2]-[6] have appeared in the
last few years, and quantitative solutions are difficult to come by.
The most comprehensive theoretical treatment of radiation from
various circuit discontinuities was given by Lewin [6] back in 1960,
and has been more recently supplemented by Sobol [8], [4].

Lewin’s results, applied to an open-ended microstrip line, are used
in this short paper to explore the effect radiation has on the overall @
of microstrip resonators for different values of characteristic im-
pedance, frequency, dielectric constant, and substrate thickness.
We will also show that by correcting an error in the definition of the
fractional radiated power in previous papers [2], [5], the radiation
losses based on Lewin’s derivation are indeed in reasonably good
agreement with experimental results [2] obtained earlier.

II. LOSS CALCULATIONS

Many microstrip circuits include open-circuited matching stubs
and A;/4 or A,/2 resonators which have a tendency to radiate sub-
stantial amounts of RF power under certain conditions. This radiated
power is either lost to the outside in open structures, or may lead to
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unwanted cross coupling between various circuit elements within
a closed housing. Sometimes, lossy damping material is employed to
absorb the radiated power and reduce cross coupling in enclosed
structures. For the circuit designer, it would thus be very helpful
to know in advance what losses he can expect as a function of prime
design parameters such as characteristic impendance Z,, dielectric
constant e,, frequency f, and substrate thickness k.

The various loss contributions for a microstrip resonator can be
represented by @ values in the form

_ 2afU

Y=

¢y

where fy is the resonance frequency, U is the stored energy, and W is
the average power lost for a A\;/4 microstrip resonator as shown in
Fig. 1. The overall @; of the resonator is given by

1 1 1 1
== = (2)
Qt Qc Qd Qr -
where
2xfU
Q. = U _ conductor losses (3)
Wc Cehyg
1 1—
Qs = — (1 + q) dielectric losses 4
tgd \, ger
2afeU
Q. = U adiation losses (5)
w,
where
W. average power lost in the conductors;

W. average power lost due to radiation;

«;  conductor attenuation constant;

tg6  dielectric loss tangent;

q dielectric filling factor (fraction of total fields in the dielec-
tric).

The following assumptions are made in the calculation of the indi-
vidual @ values with the aim of keeping the results as close as possible
to realistic conditions. Thus, dielectric losses, surface roughness, and
dispersion are included, although their influence on the overall @,
in many cases is relatively minor.

1) Dielectric losses: the calculations are based on an alumina
ceramic with ¢, = 10 and #g5 = 107%; for comparison, a low dielectric
constant material RT Duroid 5870 with ¢, = 2.35 and igé = 1072
is also included. The dielectric filling factor g varies typically from
0.5 to 1 which only in the case of low ¢ leads to a sizable correction
for Qg, according to (4). For alumina, the effect of ¢ can be neglected.

2) Surface roughness: a uniform surface roughness of 5-yin rms

Quarter-wave microstrip resonator.

Fig. 1.



