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SHORT PAPERS

V. CONCLUSIONS

A study has been made on the EGW circulator, which has led to

the fabrication of a broad-band MIC circulator operating in the

frequency range 8–12 GHz. Theprincipal scope of thestudy was to

establish the fundamental physical principles which underlie the

EGC’S operation and to show how they differ from those relative

to the traditional Y-junction MIC circulators. It has been shown

that broad-band operation of the EGC requires the introduction of

mode-suppressing devices. Our choice was an inhomogeneous.mag-

netic bias. Although the performance data of a three-port EGC

favorably compare to those of other circulators, a greater complexit y

in mechanical construction aswellas hlgherand more extended mag-

netic biases are necessary to guarantee a correct operation of the

EGC. These areperhaps theprincipal reasons whyst~ch circulators

m the continuous tracking circulator (CTC) will more likely enjoy

the favor of microwave designers. For broad-band four-port circu-

lators, the EGC version seems to be much more attractive mainly

because no continuous tracking principle has been demonstrated to

exiet for this case [10]. The optimization of a four-port EGC is,

however, still underway. The theory of the EGCseems to beat a

rather early stage andstill deserves some attention.
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Measurements of Intercavity Couplings
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Absfract—This short paper describes the determination of cou-

plings within a system of coupled cavities by measuring frequencies

at which the phase of the input reflection coefficient is either 0° or
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180°. A high degree of accuracy maybe achieved and corrections can

be made for finite cavity Q.

INTRODUCTION

Accurate determination of coupling between electrical cavities is

required to design direct-coupled cavity waveguide bandpass filters.

Bethe’s [1] small-hole coupling theory, modified for larger slots by

Cohn [2], gives dimensions which are approximately correct and

normally sufficient for filter transfer functions having a small num-

ber of cavities and monotic out-of-band responses.

However, for bandpass filters which have real transmission zeros,

more stringent specifications are imposed on the accuracy of the

coupling values. Therefore, to realize this improved accuracy, it is

desirable to have some method of measuring the coupling values

within the assembled filter. This short paper describes the use of

measurements of the input reflection coefficient phase from a short-

circuited set of cavities to determine intercavity coupling. The accu-

racy is sufficient for successful tuning of such filters as the non-

minimum-phsse optimum-amplitude bandpass waveguide filter [3].

MEASUREMENT TECHNIQUE

A general lumped-element equivalent circuit for a system of n

coupled cavities is shown in Fig. 1. All resonant cavities are tuned

to a resonant frequency 00 = 1/ (LC) 1/2 = 1 rad/s and have the

same impedance, Zo = (L/C) 112= 1 Q. Use of a narrow-band ap-

proximation makes it possible to describe the coupling between the

cavities as an n X n, symmetric, purely imaginary matrix jM, which

is frequency independent near w. The element M,! is the coupling

between the jth and jth cavities.

The input impedance 211(”J is given by

det ( jM, - jkf.)
211(.) =

det ( jXI – jMn.1)
(1)

where Mn.i is the matrix resulting from the deletion of the first row

and column of M., fk = s + (1/s), s = ja, and I is the identity

matrix. Therefore, the poles and zeros of 211{”> are the eigenvalues

of Mn_l and M., respectively.

In practice the reflection coefficient P@J, which is equal to
[Zl,(d – R]/[Zl,WJ + R], is t,he parameter which is most easily

measured. It follows that the 0° and 180° phme positions of p(”)

correspond exactly to the poles and zeros of 211(”). The measuring

technique used exploits the fact that frequencies of the zeros and

poles of the input impedance can be measured with a high degree of

accuracy. Then the coupling values are computed from a knowledge

of these frequencies and the way in which the cavities are coupled.

Analytically, this problem is equivalent to determining the values

of the elements of a real symmetric matrix M from a knowledge of

its eigenvalues and the eigenvalues of one of its first-order minors.

Explicit expressions for the coupling coefficients are presented for

some cases of practical importance (i.e., n = 2, 3, and 4). Addition-

ally, a method for computing the couplings in the general case of

arbitrary n is also described.

Two Cavities (n = 2)

The condition for synchronous tuning of the cavities is

IJJD— @.1 = CO.72— cop (2)

where O.M,2 and COPare the angular frequencies of the zeros and pole

of Zll(z), respectively. Under this condition, the input impedance is

given by

(3)

The zeros are at h, = +Mu, and the poles are at k= = O.

It can be seen from thk equation that coupling MM can be com-

puted by accurately measuring the zeros of 211(2J. Fig. 2(a) is a

typical polar plot of the locus of p(z) as a function of frequency. i%nce
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FF2m
Fig. 1. General equivalent circuit of n arbitrarily coupled cavities.
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Fig. 2. (a) Typical polar plot of the locus of P(2) M a, function of fre-

quency. (b) TyDical POIW plot of the 10WIS Of P(8) aS a functiOn Of

&equincy.

()A= fl-~ AmJo) (4)
CJo (u Uo

then

or

~1, = (41)Z1-COZ2)
(5)

@o

Therefore the coupling ilflzbetween cavities 1 and 2 can be deter-

mined by measuring w and GM with ap = UO.

Three Cavities (n =3)

The conditions for synchronous tuning are

WC2 = Wo (6a)

@*2 - U#l = US8 — 40s2 (6b)

(L!Z2 - Upl = 4482 - WS2. (6c)

Theinput impedance (withMla = 0) is

X8– X( M232+M122)
21,(8) =j

kz — M282

with zeros X. = 0, ZE(MZa2 + MW2)1’Z, and poles

2(b) isaplotof p@Jasafunction of frequency.

‘The co;pling values Mzaand M,zcanbe computed by using (4)

as follows:

and

(8)

(9)

where wis equal to cooand Aco.la = f-o,l - @s8, ACOP12= %1 — %z.

Four Cavities (n = 4)

For four cavities, aunique solution is possible if only three cou-

plings are present. In this case, the conditions for synchronous

tuning of the cavities are

coo = Wpz (lOa)

6Jp2 — Wal = W,4 — U@ (lOb)

%2 — 6J*1 = cJp3 — OJpz (1OC)

Copz — Co,z = CO*3 — cop2. (lOd)

The solution for the coupling coefficients in thk case yields the

following results:

Case i:Mlz =M13 = M24 = O

“2=t-r-tYY-t-Y

M23= [(@c3–@O) /@O][(@z4–@O) /@O]

M14

()

2

M342 = ~“ – MZ32.
OJo

ctt8e ii: ikf23 = ikf13 = M24 = O

6+3 — loo
M34 . —

coo

M,, = [ (40.3 – coo) /f#Ol[ (u., – @o)/@o]

M34

‘142=F-VF(%+M24’-M1’Z
Case iii: Ms4 = M12 = M24 = 0
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WP3 — 400
M,a = —

coo

~1,= [(W – co,)/(w][ (a., – (JO) /uo]

M,3

“2’=t=J-t=)-M,’-M142

M342 = C(W – Wo) /@ol’[ (%4 – too) /@o]

M12

()UP3 — Uo 2
M232 = — – M342.

Uo

n Cavities

The solution in the general case of arbitrary n may not be unique.

However, it is easy to derive a coupling matrix M. for which the

input impedance 211(”J is specified as in (1). Then certain elements

of this matrix (where it is known that no couplings exist) can be

reduced to zero using orthogonal similarity transformations, as de-

scribed in [4]. For thk purpose, then, consider the input admittance

n -1

w(’) (A) = j II (X – d /fi (x – x,) (11)
i =1 “=1

where y; and X, are the measured (normalized) poles and zeros of

Zll@), respectively; i.e.,

The poles jk, must be simple, purely imaginary, and satisfy the

condition [4]

5X,=0. (13)
“-1

A partial fraction expansion of (11) can now be made as

where

(14)

n-1

K;= ~(x~–~J)/ fi (X,–h,), i = 1,2,. ..,n. (15)
1=1 v-1; ,7%

Note that all the residues KJ are real, positive, and satisfy the

condition [4]

~ ?wK, = O. (16)
t =1

The conditions expressed by (13) and (16) are necessmy conditions

for synchronous tuning of the cavities.

An orthogonal matrix T can now be constructed whose first row

is given by

T,i = (Kj/N2) 112, j = 1,2,...,n (17)

where

N2=5Ki

is a normalization constant. The remainder of T can be found by a

variety of ways; e.g., by using the Gram-Schmidt procedure and

the coupling matrix M can be constructed from

M = TAT’ (18)

where A = diag (kl,ht,. ..,&) and T~ is the transpose of T. The

diagonal elements of M as well as other nondiagonal elements can

be reduced to zero [4], and hence the required coupling matrix is

reconstructed. In particular, if the cavities in the structure being

measured are direct coupled (i.e., no cross-couplings exist between

nonadj scent cavities), then the reduction of M to a tridiagonal form

is always possible and yields the (unique) values of the coupling

elements. In practice one can always apply this result in measuring

any desired couplings in a multiple-coupled cavity system by the

proper choice of a subset of direct-coupled cavities which contains

the couplings to be measured, while detuning other cavities to

which a cross-coupling path exists.

MEASUREMENT ACCURACY

In practice, since the cavities have finite unloaded Q, a limit will

be set on the smallest coupling that can accurately be measured.

It is possible to see the qualitative effect of the loss on measurement

accuracy by considering two cavities. If the loss is taken into ac-

count, the coupling is given by

This leads to the approximate rule that M must beat least 10 (l/Q)

to keep the error less than 0.5 percent.

The 0° and 180° phase positions of p can be accurately measured

by using a network analyzer and by employing a stable CW source

together with a digital counter. The final error in M is principally

dependent on operator and network analyzer error.

CONCLUSIONS

Fig. 3 is a typical result of the measured coupling between two

waveguide cavities. It has been found that the coupling value is not

constant, but depends on the resonant frequency of the screw-tuned

cavities. The coupling is affected by the penetration of a tuning

screw or the presence of additional coupling slots and/or screws. The

mode is perturbed, and consequently the coupling is decreased. This

result demonstrates very clearly that, for precise realization of a

set of coupling slots, it is essential for coupling measurements to be

made within the filter while the filter is assembled and while each

cavity is tuned to synchronous frequency.

The measurement technique was first used to set the coupling

values on the nonminimum-phase optimum-amplitude waveguide

bandpass filter [3]. Without such a technique, it would have been

I I I I I I I
CAVITY DIMENSIONS = 2290 m X 2290 m X 1,934 ,.
SLOT WIDTH = 00625 ,“
SLOT LENGTH . 08255 ,.
WALL THICKNESS OF SLOT = O020 m

●

,,, ~ I I I I I I

389 390 391 392 393 394 395 396

FREQUENCY (GHzI

Fig, 3, Side-wall coupling versus cavity synchronous frequency.
i-1
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impossible to tune the filter due to perturbation of the coupling

values by the coupling and tuning screws.
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Loss Considerations for Microstrip Resonators

E. BELOHOUBEK, FELLOW, IEEE, AND
E. DENLINGER, MEMBER, IEEE

A&s&act—The influence of radiation losses on the Q of microstrip

resonators is shown for a variety of frequencies, characteristic im-

pedances, substrate materials, and thicknesses. Radiation becomes

a dominant f actor at h@er frequencies, especially for low-impedance

lines and thick substrates with a low dielectric constant.

I. INTRODUCTION

The designer of microstrip circuits is often faced with the question

of what the best substrate thickness is, and what characteristic im-

pedance should be used if low loss is of prime importance. The partic-

ular circuit may be a high-Q resonator, a coupled-line filter, or some

general matching network. The losses encountered with microstrip

circuits divide into conduction, dielectric, and radiation losses. The

first two loss factors have been dealt with extensively in the literature

and good approximations exist [1]. Radiation losses are less well

understood although several articles [2]–[6] have appeared in the

last few years, and quantitative solutions are difficult to come by.

The most comprehensive theoretical treatment of radiation from

various circuit discontinuities was given by Lewin [6] back in 1960,

and has been more recently supplemented by Sobol [3], [4].

Lewin’s results, applied to an open-ended microstrip line, are used

in thk short paper to explore the effect radiation has on the overall Q

of microstrip resonators for cliff erent values of characteristic im-

pedance, frequency, dielectric constant, and substrate thickness.

We will also show that by correcting an error in the definition of the

fractional radiated power in previous papers [2], [5], the radiation

losses based on Lewin’s derivation are indeed in reasonably good

agreement with experimental results [2] obtained earlier.

II. LOSS CALCULATIONS

Many microstrip circuits include open-circuited matching stubs

and Xfl/4 or x~/2 I esonators which have a tendency to radiate sub-

stantial amounts of RF power under certain conditions. Thk radiated

power is either lost to the outside in open structures, or may lead to

Manuscript received July 22, 1974; revised October 24, 1974.
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unwanted cross coupling between various circuit elements within

a closed housing. Sometimes, 10SSY damping material is employed to

absorb the radiated power and reduce cross coupling in enclosed

structures. For the circuit designer, it would thus be very helpful

to know in advance what losses he can expect as a function of prime

design parameters such as characteristic impedance ZO, dielectric

constant e,, frequency j, and substrate thickness h.

The various loss contributions for a microstrip resonator can be

represented by Q values in the form

27rfJ7
Q=F (1)

where fo is the resonance frequency, U is the stored energy, and W is

the average power lost for a x~/4 microstrip resonator as shown in

Fig. 1. The overall Qt of the resonator is given by

where

where

w.

w.

a.
tgs

!7

(2)

27rfou
Q, = ~ = --& conductor losses (3)

c

Q,=~(l+~) dielectriclosses (4)

29rfou
Qr=F radiation losses (5)

T

average power lost in the conductors;

average power lost due to radiation;

conductor attenuation constant;

dielectric loss tangent;

dielectric filling factor (fraction of total fields in the dielec-

tric).

The following assumptions are made in the calculation of the indi-

vidual Q values with the aim of keeping the results as close as possible

to realistic conditions. Thus, dielectric losses, surface roughness, and

dkpersion are included, although their influence on the overall Q,

in many cases is relatively minor.

1) Dielectric losses: the calculations are based on an alumina

ceramic with c, = 10 and tg~ = 10–4; for comparison, a low dielectric

constant material RT Duroid 5870 with e, = 2.35 and tg~ = 10–3

is also included. The dielectric filling factor q varies typically from

0.5 to 1 which only in the case of low e, leads to a sizable correction

for Q~, according to (4). For alumina, the effect of q can be neglected.

2) Surface roughness: a uniform surface roughness of 5-~in rms

-L
+-

Fig. 1. Quarter-wave microstrip resonator.


